首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1336篇
  免费   124篇
  国内免费   488篇
安全科学   121篇
废物处理   78篇
环保管理   92篇
综合类   930篇
基础理论   163篇
环境理论   1篇
污染及防治   367篇
评价与监测   64篇
社会与环境   69篇
灾害及防治   63篇
  2024年   6篇
  2023年   40篇
  2022年   101篇
  2021年   73篇
  2020年   85篇
  2019年   44篇
  2018年   70篇
  2017年   79篇
  2016年   70篇
  2015年   83篇
  2014年   107篇
  2013年   143篇
  2012年   98篇
  2011年   93篇
  2010年   105篇
  2009年   73篇
  2008年   94篇
  2007年   66篇
  2006年   73篇
  2005年   45篇
  2004年   28篇
  2003年   30篇
  2002年   25篇
  2001年   28篇
  2000年   37篇
  1999年   49篇
  1998年   28篇
  1997年   28篇
  1996年   31篇
  1995年   24篇
  1994年   26篇
  1993年   17篇
  1992年   11篇
  1991年   15篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有1948条查询结果,搜索用时 109 毫秒
61.
采用室内实验装置,研究了以农业废弃物竹笋壳为反硝化碳源和生物膜载体的生物反应器对于污水中硝酸盐的去除效果,并另设以聚丙烯惰性填料球为生物膜载体的生物反应器作为对照实验。实验结果表明,以天然竹笋壳作为反硝化碳源和生物膜载体的反应器启动时间短,对污水中硝酸盐氮的去除效果较好;装置对进水DO和pH值变化有一定抗性,DO在2.0~4.0mg/L,pH值在6.8~7.2之间变化时,反应器硝酸盐的去除率变化很小,缓冲能力较强;反应器稳定性强,出水硝酸盐的去除率在80%以上。  相似文献   
62.
Economic and highly effective methods of in situ remediation of Cd and As polluted farmland in mining areas are urgently needed. Pot experiments with Brassica chinensis L. were carried out to determine the effects of three soil amendments [a novel iron-silicon material (ISM), a synthetic zeolite (SZ) and an alkaline clay (AC)] on vegetable uptake of As and Cd. SEM–EDS and XRD analyses were used to investigate the remediation mechanisms involved. Amendment with ISM significantly reduced the concentrations of As and Cd in edible parts of B. chinensis (by 84–94 % and 38–87 %, respectively), to levels that met food safety regulations and was much lower than those achieved by SZ and AC. ISM also significantly increased fresh biomass by 169–1412 % and 436–731 % in two consecutive growing seasons, while SZ and AC did not significantly affect vegetable growth. Correlation analysis suggested that it was the mitigating effects of ISM on soil acidity and on As and Cd toxicity, rather than nutrient amelioration, that contributed to the improvement in plant growth. SEM–EDS analysis showed that ISM contained far more Ca, Fe and Mn than did SZ or AC, and XRD analysis showed that in the ISM these elements were primarily in the form of silicates, oxides and phosphates that had high capacities for chemisorption of metal(loid)s. After incubation with solutions containing 800 mg L?1 AsO4 2? or Cd2+, ISM bound distinctly higher levels of As (6.18 % in relative mass percent by EDS analysis) and Cd (7.21 % in relative mass percent by EDS analysis) compared to SZ and AC. XRD analysis also showed that ISM facilitated the precipitation of Cd2+ as silicates, phosphates and hydroxides, and that arsenate combined with Fe, Al, Ca and Mg to form insoluble arsenate compounds. These precipitation mechanisms were much more active in ISM than in SZ or AC. Due to the greater pH elevation caused by the abundant calcium silicate, chemisorption and precipitation mechanisms in ISM treatments could be further enhanced. That heavy metal(loid)s fixation mechanisms of ISM ensure the remediation more irreversible and more resilient to environmental changes. With appropriate application rate and proper nutrients supplement, the readily available and economic ISM is a very promising amendment for safe crop production on multi-metal(loids) polluted soils.  相似文献   
63.
Environmental Science and Pollution Research - Improved understanding of the fractionation and geochemical characteristic of rare earth elements (REEs) from steel plant emissions is important due...  相似文献   
64.
Su  Haojie  Wu  Yao  Xie  Ping  Chen  Jun  Cao  Te  Xia  Wulai 《Environmental science and pollution research international》2016,23(22):22577-22585

Carbon (C), nitrogen (N) and phosphorus (P) are the three most important essential elements limiting growth of primary producers. Submerged macrophytes generally absorb nutrients from sediments by root uptake. However, the C:N:P stoichiometric signatures of plant tissue are affected by many additional factors such as taxonomy, nutrient availability, and light availability. We first revealed the relative importance of taxonomy, sediment, and water column on plant C:N:P stoichiometry using variance partitioning based on partial redundancy analyses. Results showed that taxonomy was the most important factor in determining C:N:P stoichiometry, then the water column and finally the sediment. In this study, a significant positive relationship was found between community C concentration and macrophyte community biomass, indicating that the local low C availability in macrophytes probably was the main reason why submerged macrophytes declined in Yangtze floodplain shallow lakes. Based on our study, it is suggested that submerged macrophytes in Yangtze floodplain shallow lakes are primarily limited by low light levels rather than nutrient availability.

  相似文献   
65.
三峡库区重庆段土壤保持服务时空分布格局研究   总被引:4,自引:0,他引:4  
土壤保持是生态系统服务与功能的重要组成,在防止土壤侵蚀、减少径流泥沙与农业面源污染等方面具有至关重要的作用。以对国家生态安全具有重要作用的土壤保持生态功能区——三峡库区重庆段为研究区域,研究得到了2000~2013年时间序列区域土壤保持服务"流量"结果,结果表明:(1)三峡库区重庆段多年平均土壤保持量为604.39 t/hm~2·a,沿长江干流自西向东逐渐增强,区域差异显著;(2)三峡库区的土壤保持服务存在明显的垂直分异特征,随着高程的增加,以300 m与900 m为节点,出现递减-递增-递减的分段规律,与人类活动存在明显的相关关系;(3)增加森林覆被面积是改善区域土壤保持、减少水土流失的重要举措。同时,在三峡库区开展坡改梯工程,减少坡耕地的数量能够有效控制区域水土流失;  相似文献   
66.
● This study systematically examined the relationship between groundwater Cd and UCL. ● The study covered 211 UCL and sociological characteristic from nine groundwater samples. ● We found a significant positive correlation between groundwater Cd and UCL. ● Smoking status and education level also significantly affected UCL. Cadmium (Cd) has received widespread attention owing to its persistent toxicity and non-degradability. Cd in the human body is mainly absorbed from the external environment and is usually assessed using urinary Cd. Hunan Province is the heartland of the Chinese non-ferrous mining area, where several serious Cd pollution events have occurred, including high levels of Cd in the urine of residents. However, the environmental factors influencing high urinary Cd levels (UCLs) in nearby residents remain unclear. Therefore, 211 nearby residents’ UCLs and the corresponding sociological characteristics from nine groundwater samples in this area were analyzed using statistical analysis models. Groundwater Cd concentration ranged from 0.02 to 1.15 μg/L, aligning with class III of the national standard; the range of UCL of nearby residents was 0.37–36.60 μg/L, exceeding the national guideline of 0–2.5 μg/L. Groundwater Cd levels were positively correlated with the UCL (P < 0.001, correlation coefficient 95 % CI = 9.68, R2 = 0.06). In addition, sociological characteristics, such as smoking status and education level, also affect UCL. All results indicate that local governments should strengthen the prevention and abatement of groundwater Cd pollution. This study is the first to systematically evaluate the relationship between groundwater Cd and UCL using internal and external environmental exposure data. These findings provide essential bases for relevant departments to reduce Cd exposure in regions where the heavy metal industry is globally prevalent.  相似文献   
67.
● pz-UiO-66 was synthesized facilely by a solvothermal method. ● Efficient capture of copper from highly acidic solution was achieved by pz-UiO-66. ● pz-UiO-66 exhibited excellent selectivity and capacity for copper capture. ● Pyrazine-N in pz-UiO-66 was shown to be the dominant adsorption site. The selective capture of copper from strongly acidic solutions is of vital importance from the perspective of sustainable development and environmental protection. Metal organic frameworks (MOFs) have attracted the interest of many scholars for adsorption due to their fascinating physicochemical characteristics, including adjustable structure, strong stability and porosity. Herein, pz-UiO-66 containing a pyrazine structure is successfully synthesized for the efficient separation of copper from strongly acidic conditions. Selective copper removal at low pH values is accomplished by using this material that is not available in previously reported metal–organic frameworks. Furthermore, the material exhibits excellent adsorption capacity, with a theoretical maximum copper uptake of 247 mg/g. As proven by XPS and FT-IR analysis, the coordination of pyrazine nitrogen atoms with copper ions is the dominant adsorption mechanism of copper by pz-UiO-66. This work provides an opportunity for efficient and selective copper removal under strongly acidic conditions, and promises extensive application prospects for the removal of copper in the treatment for acid metallurgical wastewater.  相似文献   
68.
微生物修复在土壤污染治理中具有重要地位。虽然环境中可以培养的微生物比例很低,但微生物的基因资源十分丰富,运用宏基因组技术可以克服传统修复技术中微生物资源利用不充分的问题,为未培养微生物的研究提供了有力手段。本文对宏基因组技术一般流程作了介绍,并结合土壤污染的特点,对该技术应用在土壤污染微生物修复的现状、研究及展望作了阐述。  相似文献   
69.
The understanding of organic phosphorus(P) dynamics in sediments requires information on their species at the molecular level,but such information in sediment profiles is scarce.A sediment profile was selected from a large eutrophic lake,Lake Taihu(China),and organic P species in the sediments were detected using solution phosphorus-31 nuclear magnetic resonance spectroscopy(31 P NMR) following extraction of the sediments with a mixture of 0.25 mol/L NaOH and 50 mmol/L EDTA(NaOH-EDTA) solution.The results showed that P in the NaOH-EDTA extracts was mainly composed of orthophosphate,orthophosphate monoesters,phospholipids,DNA,and pyrophosphate.Concentrations of the major organic P compound groups and pyrophosphate showed a decreasing trend with the increase of depth.Their half-life times varied from 3 to 27 years,following the order of orthophosphate monoesters > phospholipids DNA > pyrophosphate.Principal component analysis revealed that the detected organic P species had binding phases similar to those of humic acid-associated organic P(NaOH-NRP HA),a labile organic P pool that tends to transform to recalcitrant organic P pools as the early diagenetic processes proceed.This demonstrated that the depth attenuation of the organic P species could be partly attributed to their increasing immobilization by the sediment solids,while their degradation rates should be significantly lower than what were suggested in previous studies.  相似文献   
70.
Although microbial treatments of heavy metal ions in wastewater have been studied, the removal of these metals through incorporation into carbonate minerals has rarely been reported. To investigate the removal of Fe^3+ and Pb^2+, two representative metals in wastewater, through the precipitation of carbonate minerals by a microbial flocculant (MBF) produced by Bacillus mucilaginosus. MBF was added to synthetic wastewater containing different Fe^3+ and Pb^2+ concentrations, and the extent of flocculation was analyzed. CO2 was bubbled into the mixture of MBF and Fe^3+/Pb^2+ to initiate the reaction. The solid substrates were analyzed via X-ray diffraction, transmission electron microscopy and energy dispersive spectroscopy. The results showed that the removal efficiency decreased and the MBF adsorption capacity for metals increased with increasing heavy metal concentration. In the system containing MBF, metals (Fe^3+ and Pb^2+), and CO2, the concentrated metals adsorbed onto the MBF combined with the dissolved CO2, resulting in oversaturation of metal carbonate minerals to form iron carbonate and lead carbonates. These results may be used in designing a method in which microbes can be utilized to combine CO2 with wastewater heavy metals to form carbonates, with the aim of mitigating environmental problems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号